Pages

Tuesday, February 8, 2011

Sheet Metal Forming - Bending Springback

Bending Springback
When bending a piece of sheet metal, the residual stresses in the material will cause the sheet to springback slightly after the bending operation. Due to this elastic recovery, it is necessary to over-bend the sheet a precise amount to achieve the desired bend radius and bend angle. The final bend radius will be greater than initially formed and the final bend angle will be smaller. The ratio of the final bend angle to the initial bend angle is defined as the springback factor, KS. The amount of springback depends upon several factors, including the material, bending operation, and the initial bend angle and bend radius.

Bending Springback




Bending is typically performed on a machine called a press brake, which can be manually or automatically operated. For this reason, the bending process is sometimes referred to as press brake forming. Press brakes are available in a range of sizes (commonly 20-200 tons) in order to best suit the given application. A press brake contains an upper tool called the punch and a lower tool called the die, between which the sheet metal is located. The sheet is carefully positioned over the die and held in place by the back gauge while the punch lowers and forces the sheet to bend. In an automatic machine, the punch is forced into the sheet under the power of a hydraulic ram. The bend angle achieved is determined by the depth to which the punch forces the sheet into the die. This depth is precisely controlled to achieve the desired bend. Standard tooling is often used for the punch and die, allowing a low initial cost and suitability for low volume production. Custom tooling can be used for specialized bending operations but will add to the cost. The tooling material is chosen based upon the production quantity, sheet metal material, and degree of bending. Naturally, a stronger tool is required to endure larger quantities, harder sheet metal, and severe bending operations. In order of increasing strength, some common tooling materials include hardwood, low carbon steel, tool steel, and carbide steel.

No comments: